Laccaridiones A and B, New Protease Inhibitors from *Laccaria amethystea*

Sir:

There is growing interest in new inhibitors of proteases and metalloproteases due to their role in various human diseases.

In a screening for new inhibitors of proteases as lead structures we disclosed recently the basidiomycete strain of *Laccaria amethystea* as the producer of active compounds. Here we report the isolation and structure determination of laccaridiones A (1) and B (2) (Fig. 1) as new inhibitors of trypsin, papain, thermolysin, collagenase and zinc-protease.

The strain was isolated from the stem of fruiting body of *Laccaria amethystea* in the *Fagus sylvatica*-forest near Jena (Thuringia, Germany). At the beginning the flat mycelium

Fig. 1. Structures of laccaridione A (1) and laccaridione B (2).

shows a cream to greyish colour with a violet colourcomponent, later on it turns to grey-violet until violetbrown with a somewhat bright violet-grey air-mycelium staining the agar intensively from brown-violet to violetblack. The hyphae are hyaline, about $2 \mu m$ thick, later thicker and septated, about $6 \mu m$ in diameter, finally some hyphae are inflated with thick short cells ($16/10 \mu m$). Air mycelium shows guarted and branched structures and in some cases also inflated hyphae tips similar to chlamydospores. The cell content is violet and it changes later to brown-violet.

These properties suggest that the strain is a representative of *Laccaria amethystea*¹⁾.

The producer strain was cultivated as surface culture at 24° C in 500 ml Erlenmeyer bottles containing 100 ml medium composed as follows (g/liter): malt extract 20, glucose 10, yeast extract 1, pH 6.0. Each bottle was inoculated with a 2 cm² area of 21 days agar culture. The cultivation time was three weeks at 24°C.

1 and **2** were extracted from 30 liters of the surface culture of *Laccaria amethystea* with 20 liters of ethyl acetate, which was subsequently dried (Na_2SO_4) and evaporated to obtain 1.5 g of a deep purple oil. This was chromatographed subsequently on silica gel 60 (Merck, $0.063 \sim 0.1$ mm, column 600×30 mm). Sequential elution occurred with 400 ml portions of *n*-hexane, *n*-hexane-chloroform (7:3, 1:1, 1:3, 0:1, v/v). Fractions of similar composition as determined by TLC analysis were pooled

Table 1. Physico-chemical properties of laccaridiones A (1) and B (2).

<u> </u>	(1)	(2)	
Appearance	deeply reddish solid	deeply reddish solid	
Melting point ^a	164 - 165 °C	178 - 179 °C	
Chemical formula	$C_{22}H_{24}O_{6}$	$C_{23}H_{26}O_{6}$	
HREI-MS m/z	384.1583 [M] ⁺ calcd. 384.1573	398.1712 [M] ⁺ calcd. 398.1729	
UV (λ_{max} ; nm) in parantheses ϵ ; (cm ² /Mol, in MeOH) ^b	239 (19300), 298 (17000), 481 (12800)	239 (19000), 299 (16500), 480 (12100)	
Rf on TLC (CHCl ₃ : MeOH, 99.5:0.5, v/v)	0.8	0.7	

^a Büchi Melting Point B 540

^b Beckmann DU 600

Position		1	1	
	δ _C	δ _H	δ _C	δ _H
1	178.9	-	178.8	-
2	176.9	-	177.0	-
3	152.0	-	152.0	-
4	113.7	6.3 (s)	113.7	6.3 (s)
5	157.0	_	158.0	-
6	118.6	6.5 (s)	118.7	.6.5 (s)
7	144.2	- · ·	142.1	-
8	99.9	6.0 (s)	99.9	6.0 (s)
9	161.8	-	157.8	-
10	-		-	-
11	94.6	6.3 (s)	93.4	6.4 (s)
12	112.8	-	113.7	-
13	164.0	- '	164.0	-
14	110.9	-	111.0	-
15	55.4	3.6 (d; 7.2)	64.1	3.8; 3.9 (m)
16	-	-	15.2	1.3 (t; 7.2)
17	55.7	3.8 (s)	5.7	3.8 (s)
1'	127.1	-	127.2	-
2'	140.8	6.3 (dd; 8.1, 1.5)	140.7	6.3, (dd; 8.0, 1.2)
3'	34.8	2.4 (m)	34.8	2.5)m)
4'	30.1	1.4; 1.5 (m)	30.1	1.4, 1.5 (m)
5'	11.9	0.8 (t; 7.1)	11.9	0.8 (t; 7.0)
6'	12.8	1.9 (s)	12.8	1.9 (s)
7'.	20.2	1.0 (d; 6.8)	20.2	1.0 (d; 6.9)
13-OH	-	12.6 (s)	-	12.6 (s)

Table 2. ¹H and ¹³C assignments of laccaridiones A (1) and B (2) (in CDCl₃, chemical shifts in ppm, multiplicity in parentheses (s: singlet, d: doublet, t: triplet, m: multiplet), coupling constants in Hz).

to yield 50 mg of 1 and 2 as a brownish mass. Final purification was carried out by chromatography on Sephadex LH-20 (column 400×20 mm; eluent dichloromethane-hexane (4:1, v/v)). Yield: 13 mg of laccaridione A (1) and 17 mg laccaridione B (2).

Important physico-chemical properties of 1 and 2 are shown in Table 1. The presence of an *ortho*-benzoquinone ring system was suggested by the UV spectra of 1 and 2 $(\lambda_{max} 299 \text{ and } 481 \text{ nm}; \text{ shift to } 392 \text{ and } 542 \text{ nm upon the}$ addition of NaOH)^{2,3)}. The molecular weight and the chemical formula of the novel metabolites were determined from the HREI mass spectra (double-focusing mass spectrometer AMD 402; Intectra Harpstedt, Germany) (Table 1). The positive ion electrospray ionization mass spectra showed $m/z 385.1 \text{ [M+H]}^+$ of 1 and m/z 399.3 $[M+H]^+$ of 2 (triple quadrupole mass spectrometer Quattro 400; VG Biotech; Altrincham, U.K.).

Information about the length of the side chain was furnished by the EI-MS fragmentation pattern. Thus the loss of a C_5H_9 moiety m/z 69 suggested a 1,3-dimethylpentyl group and its binding to an oxygen-substituted vinylic carbon.

The structures of compounds **1** and **2** were determined by one- and two-dimensional NMR experiments (¹H, ¹³C, DEPT, COSY, HMBC, HSQC, NOESY; Table 2; Bruker Avance DRX 500, Germany).

The ¹H NMR spectra displayed two aromatic singlet protons, aliphatic doublet- and triplet methyl groups, signals of two methoxyl groups (in 1) and two methylene and methine protons. The latter CH–CH₃ and CH₂–CH₃

VOL. 53 NO. 11

groups were attributable to the aliphatic side-chain. **2** was distinguishable by an oxymethylene signal instead of a methoxyl group and an additional triplet proton methyl group. ¹³C NMR data confirmed the presence of twenty-two and twenty-three carbons respectively. Distinguishable were two carbonyl groups and several sp^2 - and sp^3 -hybridized carbon atoms⁴).

As shown in Fig. 2 every carbon atom of 1 and 2 was assignable by the C,H long-range correlations observed in the HMBC spectra⁵⁾. The presence of an *ortho*-quinone moiety was confirmed by the observed C,H long-range correlations between H-4 and C-2 (${}^{4}J_{C,H}$; weak).

The stereochemistry of the side chain double bond was assigned as E (Fig. 1) due to the strong NOE effect between H-6' and H-7' in the NOESY spectra of 1 and 2 at the one side, and the missing NOE effect between H-2' and H-6' at the other. Further NOE effects between H-4 and H-6 and H-6 and H-8 in the ringsystem supported unambiguously the proposed structure in combination with long-range correlations of the HMBC spectra.

Metabolites 1 and 2 inhibited a series of proteases such as trypsin, papain, thermolysin, collagenase (all Sigma) and zinc-protease from *Bacillus subtilis*. The mode of inhibition of proteases by 1 and 2 remains to be clarified. Though pquinones and hydroxyquinones have been reported as nonpeptide inhibitors of peptide-cleaving enzymes^{6,7)},

Fig. 2. Instructive C, H long-range couplings (HMBC spectrum (→) and NOE's in the NOESY spectrum (→) of 1).

no information is available on *o*-quinones, especially naphthopyran-8,9-diones. The IC_{50} values are shown in Table 3.

Laccaridione B (2) displayed strong antiproliferative effect on the murine fibroblast-cell line L-929 (IC₅₀= $2.4 \,\mu$ g/ml) and the human leukemia cell line K-562 (IC₅₀= $1.8 \,\mu$ g/ml). However, the cytotoxic effect on HeLa was moderated with a IC₅₀ value of $13.9 \,\mu$ g/ml.

Acknowledgements

We gratefully acknowledge support of this work by BMBF (BEO 22/03 10 493 A), FCI (Frankfurt am Main) and the Bayer AG, Leverkusen (Germany).

Albrecht Berg^{*,†} Kathrin Reiber[†] Heinrich Dörfelt^{††} Grit Walther^{††} Brigitte Schlegel[†] Udo Gräfe[†]

 [†]Hans-Knöll-Institute for Natural Products Research, Beutenbergstr. 11, D-07745 Jena, Germany
^{††}Institute of Ecology and Environment, University of Jena, Dornburgerstr. 159, D-07743 Jena, Germany

(Received May 12, 2000)

References

- 1) BREITENBACH, J. & F. KRÄNZLEIN: Pilze der Schweiz. Verlag Mykologia, Luzern, p. 371, Vol. 4, 1995
- 2) PATAI, S.: The chemistry of the quinonoid compounds. pp. 197~200, John Wiley and Sons, New York, 1974
- GREGORY, K. & J. B. GLOER: Obionin A, a new polyketide metabolite from the marine fungus *Leptosphaeria obiones*. Tetrahedron Lett. 30: 3483~ 3486, 1989
- 4) GUERRIERO, A.; M. D'AMBROSIO, V. CUOMO & F. PIETRA: A novel, degraded polyketidic lactone, leptospaerolide, and its likely diketone precursor, leptosphaerodione. Isolation from cultures of marine ascomycete Leptosphaeria oraemaris. Helv. Chim. Acta 74: 1445~ 1450, 1991

Table 3. Inhibitory activity of 1 and 2 against proteases as measured with labelled casein substrate⁸).

IC ₅₀ (µg/ml)							
	trypsin	papain	thermolysin	collagenase	zinc-protease		
1	14.7	2.5	18.8	7.2	18.2		
2	10.9	5.1	8.4	5.7	3.0		

- 5) BAX, A. J.: Structure determination and spectral assignment by pulsed polarization transfer via longrange ¹H-¹³C couplings. J. Mag. Res. 57: 314~318, 1984
- 6) FREDENHAGEN, A.; F. PETERSEN, J. ROSEL, H. METT & P. HUG: Semicochlidinol A and B: inhibitors of HIV-1 protease and EGF-R protein tyrosine kinase related to asterriquinones produced by the fungus *Chrysosporium merdarium*. J. Antibiotics 50: 395~401, 1997
- 7) TAKANO, S.; S. GATELY, J. B. JIANG & S. STEVEN: A diaminoanthraquinone inhibitor of angiogenesis. J. Pharmacol. Exp. Ther. 271: 1027~1033, 1994
- 8) JONES, L. J.; R. H. UPSON, R. P. HAUGLAND, N. VOLOSHINA, M. ZHOU & R. P. HAUGLAND: Quenched BODIPY dye labeled casein substrates for the assay of protease activity by direct fluorescence measurement. Anal. Biochemistry 251: 144~152, 1997